Materiały ceramiczne odporne na zużycie
Materiały ceramiczne odporne na zużycie to klasa wysokotwardych, wysoce odpornych na zużycie nieorganicznych materiałów niemetalicznych, wykonanych z głównych surowców, takich jak tlenek glinu (Al₂O₃), tlenek cyrkonu (ZrO₂), węglik krzemu (SiC) i azotek krzemu (Si₃N₄) poprzez formowanie i spiekanie w wysokiej temperaturze. Są szeroko stosowane do rozwiązywania problemów związanych ze zużyciem, korozją i erozją w urządzeniach przemysłowych.
Główne cechy charakterystyczne wydajności
Bardzo wysoka twardość i odporność na zużycie
Biorąc za przykład najczęściej stosowaną ceramikę z tlenku glinu, jej twardość w skali Mohsa może osiągnąć 9 (ustępując jedynie diamentowi), a jej odporność na zużycie jest 10-20 razy większa niż stali wysokomanganowej i kilkadziesiąt razy większa niż zwykłej stali węglowej. Ceramika z tlenku cyrkonu ma jeszcze lepszą wytrzymałość i może wytrzymać większe obciążenia udarowe.
Silna odporność na korozję
Mają bardzo wysoką stabilność chemiczną, odporność na korozję kwasów, zasad i roztworów soli, a także mogą wytrzymać erozję rozpuszczalników organicznych, doskonale sprawdzając się w korozyjnych warunkach pracy, takich jak przemysł chemiczny i metalurgiczny.
Dobra wydajność w wysokich temperaturach
Ceramika z tlenku glinu może pracować przez długi czas poniżej 1200°C, a ceramika z węglika krzemu może wytrzymać wysokie temperatury powyżej 1600°C, dostosowując się do zużycia w wysokich temperaturach i scenariuszy erozji gazów w wysokich temperaturach.
Niska gęstość, zaleta lekkości
Gęstość wynosi około 1/3-1/2 gęstości stali, co może znacznie zmniejszyć obciążenie po zamontowaniu na urządzeniu, zmniejszając zużycie energii i zużycie konstrukcyjne sprzętu.
Kontrolowana izolacja i przewodność cieplna
Ceramika z tlenku glinu jest doskonałym izolatorem elektrycznym, podczas gdy ceramika z węglika krzemu ma wysoką przewodność cieplną. Różne składy materiałowe można wybierać w zależności od potrzeb.
Wady
Stosunkowo kruche i mają stosunkowo słabą odporność na uderzenia (można to poprawić poprzez modyfikację kompozytową, taką jak kompozyty ceramiczno-gumowe i ceramiczno-metalowe); formowanie i przetwarzanie są trudniejsze, a koszt dostosowania jest nieco wyższy niż w przypadku materiałów metalowych.
Typowe rodzaje i odpowiednie scenariusze
| Rodzaj materiału |
Główny składnik |
Najważniejsze cechy wydajności |
Typowe zastosowania |
|
Ceramika glinowa
|
Al₂O₃ (zawartość 92%-99%)
|
Wysoki stosunek ceny do wydajności, wysoka twardość, doskonała odporność na zużycie
|
Wyściółki rurociągów, wykładziny odporne na zużycie, rdzenie zaworów, dysze do piaskowania
|
|
Ceramika cyrkonowa
|
ZrO₂
|
Wysoka wytrzymałość, odporność na uderzenia i odporność na uderzenia w niskich temperaturach
|
Młoty kruszarek, łożyska odporne na zużycie i wojskowe elementy odporne na zużycie
|
|
Ceramika z węglika krzemu
|
SiC
|
Odporność na wysoką temperaturę, wysoka przewodność cieplna, odporność na silne kwasy i zasady
|
Rurociągi do wtrysku węgla do wielkiego pieca, wykładziny reaktorów chemicznych, wymienniki ciepła
|
|
Ceramika z azotku krzemu
|
Si₃N₄
|
Właściwość samosmarująca, wysoka wytrzymałość, odporność na szok termiczny
|
Łożyska szybkie, łopatki turbin, precyzyjne części odporne na zużycie
|
Typowe zastosowania:Rurociągi do transportu popiołu i węgla mielonego w elektrowniach, rurociągi powietrza pierwotnego i wtórnego w kotłach oraz systemy usuwania popiołu i żużla.Transport szlamu, transport odpadów poflotacyjnych i rurociągi wysokociśnieniowe w zakładach górniczych i przetwórstwa mineralnego.Rurociągi surowców, klinkieru i węgla mielonego oraz systemy odpylania w cementowniach.
FAQ
P1: Jak dużo dłuższa jest żywotność materiałów ceramicznych odpornych na zużycie w porównaniu z tradycyjnymi materiałami metalowymi?
O1: Żywotność materiałów ceramicznych odpornych na zużycie jest 5-20 razy dłuższa niż tradycyjnych materiałów metalowych (takich jak stal wysokomanganowa i stal węglowa). Biorąc za przykład najczęściej stosowaną wykładzinę ceramiczną z tlenku glinu, może być ona stabilnie używana przez 8-10 lat w ogólnych przemysłowych scenariuszach zużycia, podczas gdy tradycyjne wykładziny metalowe zwykle wymagają konserwacji i wymiany co 1-2 lata. Konkretna żywotność będzie się nieznacznie różnić w zależności od rodzaju ceramiki, temperatury pracy, wytrzymałości na uderzenia medium i innych rzeczywistych warunków pracy. Możemy zapewnić dokładną ocenę żywotności w oparciu o parametry konkretnego scenariusza.
P2: Czy ceramika odporna na zużycie wytrzymuje warunki dużego uderzenia? Na przykład w kruszarkach i zsypach węglowych.
O2: Tak. Chociaż tradycyjna ceramika jednoczęściowa ma pewien stopień kruchości, znacznie poprawiliśmy jej odporność na uderzenia dzięki technologiom modyfikacji, takim jak kompozyty ceramiczno-gumowe i ceramiczno-metalowe. Ceramika cyrkonowa sama w sobie ma bardzo wysoką wytrzymałość i może być bezpośrednio stosowana w scenariuszach o średnim i wysokim uderzeniu, takich jak głowice młotów kruszarek i wykładziny zsypów węglowych; w przypadku warunków uderzenia o bardzo wysokim ciśnieniu możemy również dostosować kompozytowe struktury ceramiczne, które łączą odporność na zużycie ceramiki z odpornością na uderzenia metalu/gumy, doskonale dostosowując się do przemysłowych scenariuszy o dużym uderzeniu.
P3: Czy ceramika odporna na zużycie nadaje się do warunków silnie korozyjnych? Na przykład rurociągi silnych kwasów i silnych zasad.
O3: Są bardzo odpowiednie. Główne typy, takie jak ceramika glinowa i ceramika z węglika krzemu, mają bardzo wysoką stabilność chemiczną i mogą skutecznie chronić przed korozją silnych kwasów, silnych zasad, roztworów soli i rozpuszczalników organicznych. Ceramika z węglika krzemu ma najlepszą odporność na korozję, szczególnie nadaje się do trudnych warunków obejmujących zarówno wysoką temperaturę, jak i silną korozję, takich jak wykładziny naczyń reakcyjnych silnych kwasów i silnych zasad oraz wysokotemperaturowe rurociągi korozyjne w przemyśle chemicznym; w przypadku zwykłych scenariuszy korozyjnych ceramika glinowa może spełnić wymagania i jest bardziej opłacalna.
P4: Czy można dostosować produkty ceramiczne odporne na zużycie w oparciu o rozmiar sprzętu i wymagania dotyczące warunków pracy?
O4: Zdecydowanie. Obsługujemy pełnowymiarowe usługi dostosowywania, w tym rozmiar produktu, kształt, formułę materiału ceramicznego, strukturę kompozytową i metodę instalacji. Wystarczy podać podstawowe parametry, takie jak przestrzeń instalacyjna sprzętu, temperatura pracy, rodzaj medium (charakterystyka zużycia/korozji) i wytrzymałość na uderzenia. Nasz zespół techniczny zaprojektuje ukierunkowane rozwiązanie, a także możemy zapewnić usługi testowania próbek, aby upewnić się, że produkt dokładnie pasuje do warunków pracy.